
Material control of stem cell differentiation: challenges in
nano-characterization
PC Dave P Dingal and Dennis E Discher

Available online at www.sciencedirect.com

ScienceDirect
Recent experiments have revealed that stem cells respond

to biophysical cues as well as numerous biochemical factors.

Nanoscale properties at the cell–matrix interface that appear

to affect adherent stem cells range from matrix elasticity to

porosity-dependent matrix tethering and geometry of

adhesive linkages. Some stem cells can also remodel their

immediate environment to influence phenotype, but this

depends on matrix-material properties such as covalent

bonding and soft versus hard materials. Efforts to combine

both matrix instructions and active cell feedback are

required to properly direct stem cell behavior. Comparisons

to tissues will be increasingly key and have begun to reveal

remodeling of nuclear factors that influence epigenetics.
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Introduction
Within the last ten years, stem cell approaches have

become conceivable or even realized for each of the

roughly 200 differentiated cell types in humans. Since

most tissue cells are anchorage dependent — meaning

that adhesion to a solid is necessary for cell survival, it is

only sensible that the physicochemical nature of the

support can influence stem cell fate. Substrate stiffness,

geometry, porosity, and topography are now understood

to influence stem cells, perhaps as much as biochemical

factors [1]. Molecular pathways of cellular mechanotrans-

duction that ultimately affect both cell phenotype and

genotype are slowly becoming clear. Matrix stiffness-

dependent lineage commitment of stem cell has been

suggested to involve YAP/TAZ, which are transcription

factors previously known to influence proliferation,

whereas newer evidence suggests they are also nuclear

mechano-transducers regulated by Rho GTPase and

cytoskeletal tension independent of the canonical Hippo

pathway [2�]. More recently, polymer physics type scaling
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between tissue stiffness and the expression levels in

primary tissue of the nuclear envelope structural protein,

Lamin-A, has been reported to co-regulate YAP, among

other transcription and epigenetic factors [3]. The results

suggested that increased matrix rigidity (due to greater

collagen in high stress tissues) leads to nuclear stiffening

and greater DNA protection as a homeostatic response in

all tissue cell types, including stem cells [3�,4]. More

pathways are likely to emerge as the field gains insight

and control over micro/nano-environments as analyzed in

vivo or applied to stem cells in culture.

Virtually every organ in the body contains resident stem

cells or progenitors that contribute to organ homeostasis or

repair. Exploiting stem cells for regeneration of damaged

tissue has spurred research into their multipotentiality as

well as immunocompatibility. Therapeutics is limited in

part by in vitro cell expansion as well as materials issues that

include the design of biocompatible scaffolds for co-trans-

plantation. Since many stem cells are anchorage depend-

ent, injection in vivo should work best if the cells adhere

quickly and adequately, but it is clear in many trials with

mesenchymal stem cells (MSCs) that the vast majority of

injected cells die rather than contribute to tissue [5].

Recapitulating the various stem cell niches ex vivo is

extremely challenging as it likely involves spatiotemporal

regulation of biostimuli that extend to extracellular matrix

architecture. Nonetheless, understanding the niche in vitro
might help in translation to in vivo [6].

In this review, we describe recent advances as well as

challenges in the material control of stem cell multi-

potency and lineage commitment. By ‘stem cell’, we

refer to cited studies on MSCs (mesenchymal), NSCs

(neural), ESCs (embryonic), iPSC (induced pluripo-

tent), epidermal stem cells, etc., but we emphasize

the generality merely with ‘stem cell’ and encourage

the interested reader to seek the primary literature for

specific stem cell types. We attempt to highlight in more

detail how the field is beginning to formulate materials

design rules for stem cell cultures down to the nanoscale

in terms of fabrication and/or physical characterization.

Approaches are crudely – split into soft materials such as

hydrogels that are as soft as most tissues or else hard

materials in which the softest thing in culture is the cell.

Remarkably, there seem to be ways — i.e. rules — to

manipulate ‘boundary conditions’ in order to fool cells

into responding to a hard material in a manner similar to

(but not exactly the same as) that on a much softer

material, and vice versa.
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Soft matter control
Tissue stiffness or elasticity is dictated by the extracellular

matrix (ECM). Even a few minutes of incubation with

collagenase can soften a tissue dramatically [3�]. ECM is

comprised a network of fibrous proteins, such as collagens,

that are crosslinked in a homophilic or heterophilic man-

ner. A hierarchical polymeric network of variable density

allows for a broad range of characteristic microelasticities

for tissues: brain [7] and fat [8] are hundreds of Pascals in

stiffness whereas cartilage [9] and pre-calcified bone [10]

are dozens of kiloPascals or even stiffer on larger length

scales. Precise regulation of physical properties of the

ECM seems to match and couple to the applied mechan-

ical forces that contribute to specific cell differentiation

programs in adult tissue and likely in the embryo. A

differential cell response to both ECM elasticity and

dimensionality (i.e. 2D vs 3D) — termed ECM mechan-

osensing — has been observed in vitro through various

materials approaches, particularly with natural [11] and

synthetic [12] hydrogels. Naturally derived polymers such

as silk [13], collagen and hyaluronic acid matrices [14] are

currently used as delivery vehicles for cell transplantation.

Synthetic scaffolds are chosen based on properties that

range from biostability or biocompatibility to biodegrad-

ability and porosity. Inert synthetic hydrogels are used in
vitro for studying cell behavior such as migration, prolifer-

ation, and differentiation. Indeed, due to the chemistry

that can sometimes be very simple, physical parameters

such as elastic and viscous moduli can be precisely tuned to

mimic biological tissues.

Synthesis, functionalization and characterization

The basic components for polymer hydrogel synthesis are

a monomer, a crosslinker, and an initiator of polymeriz-

ation. The ratio and concentration of monomer and

crosslinker are varied to achieve desired viscoelastic

properties, perhaps to mimic a normal or diseased tissue

or perhaps to be distinct from a tissue. For example, a

myocardial infarct stiffens twofold to threefold relative to

normal heart tissue (�12–20 kPa) [5]. Rheological

methods provide measures of a material’s complex

modulus or stiffness (G*) composed of both an elastic

modulus (G0) and a viscous modulus (G00). These can be

measured as a function of frequency of oscillatory shear

with a rheometer, and one typically considers that the

1 Hz beating of the heart is close to the high frequency

limit of cell biological relevance. Solid tissues are mostly

elastic, with G0 values ranging from 0.1 to 100 kiloPascals

[10]. Material-dependent cell responses are thus strongly

influenced by the elastic component of a hydrogel, at least

when G00 is two orders of magnitude lower than G0. Viscous

matrix effects on cell morphology are nonetheless inter-

esting based on recent examples in the literature [15,16].

Control of hydrogel chemistry can extend to spatiotem-

poral control of polymerization [17] and micropatterning

[18]. Non-uniform substrates might, for example, mimic a
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heterogeneous cell microenvironment, but in such a case,

rheological measurements must be done at the cellular

scale. One particularly attractive method is atomic force

microscopy (AFM): a cantilever probe reflects a laser onto

a photodiode detector that measures small variations in

cantilever deflection as it indents a substrate. For such

heterogeneous substrates, an AFM cantilever can probe

and create a viscoelastic map along a preset path. For

example, we recently examined ‘durotaxis’, which is a

phenomenon in which a cell migrates toward increasing

matrix stiffness [19,20,21], and so we and others made

hydrogels with stiffness gradients and used AFM to

measure the steepness of those gradients [20,21].

Most hydrogels require some form of functionalization to

promote favorable cell–material interactions. This can be

done by linking cell-adhesive moieties into the polymer

backbone, via functional side group chemistry. The well-

known integrin-binding tripeptide RGD can be incorp-

orated into a methacrylated polymer backbone (e.g.

methacrylated polyethylene glycol) via a Michael-type

addition reaction between thiol (from a cysteine moiety in

the cell-adhesive peptide) and methacrylate groups [18].

Large matrix proteins like fibronectin and collagen can

also be covalently crosslinked into an amine-containing

hydrogel backbone via a heterobifunctional crosslinker

that contains a primary amine-reactive succinimidyl ester

and a photoactivatable nucleophilic azide (e.g. sulfo-

SANPAH) [22]. Conventional matrix functionalization

of hydrogel systems involves copious coverage of the

cell–material interface with cell-adhesive molecules, to

ensure that cell attachment is not adhesion ligand-limited

and that any differential cellular response is due to

physical properties of the matrix.

Advances in soft matter research

Whereas past studies of the cell–material interface have

focused on the effects of relatively homogeneous and

weakly varying materials on stem cells, recent efforts have

begun to address some aspects of matrix micro/nano-

heterogeneity. Tools that allow non-invasive in situ
measurements of cell–material interaction at small scales

could ultimately clarify governing principles for cell–
material interface design. Fabrication approaches are

equally important as they should allow for systematic

nanoscale control of substrate topography and functiona-

lization. A great deal of effort needs to be spent in (1)

understanding how matrix ligand is presented at the inter-

face, (2) how a cell adheres and applies ligand-dependent

and stiffness-dependent traction forces to a material, and

(3) how a cell remodels or secretes adhesion-relevant

molecules or other factors presented at its interface.

Insight into the first two issues above has been obtained

from integrin clustering that occurs when a cell exerts

traction forces in response to stiff matrix. Huebsch et al.
[23��] found that increasing matrix resistance to adhesion
Current Opinion in Biotechnology 2014, 28:46–50
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ligand displacement leads to a greater ability of a cell to

exert traction forces that allow for more stable integrin–
ligand bonds [24] and ultimately, greater propensity toward

osteogenic commitment. They encapsulated stem cells in

3D non-degradable, RGD-modified alginate gels for which

elastic modulus (2.5–110 kPa) was varied by the extent of

ionic crosslinking. In contrast to 2D studies where cells

spread more in response to increased matrix rigidity,

encapsulation in 3D nanoporous hydrogels maintained a

rounded shape. The ability of encapsulated cells to

rearrange integrin–RGD linkages in the ionically cross-

linked alginates is estimated by fluorescence resonance

energy transfer (FRET) of rhodamine-labelled and fluor-

escein-labelled RGD peptides clustering near the cell

membrane [24] and appeared to depend on matrix stiffness

and seemed optimal at an intermediate stiffness (�20–
30 kPa), where integrin receptors were estimated to probe

50 nm into the surrounding environment. In contrast,

Khetan et al. [25�] made 3D covalently crosslinked metha-

crylated hyaluronic acid (MeHA) hydrogels (G0 = 4–
95 kPa) and found a lack of matrix elasticity dependence,

with most cells driven toward adipogenic commitment.

Differences between the two systems start with the nature

of crosslinking and could extend to how growth factors in

serum differentially adsorb to or bind the gels or permeate

gel pores; differentiation-relevant factors in serum include

TGFb, which is in a large latent complex that must

immobilize near a cell in order for traction forces to release

the active growth factor [26]. Determination of traction-

dependent stiffness sensing involves many assumptions

about matrix stiffness at the cell interface and is difficult to

assess when cells are embedded in 3D. Yet stiffness sen-

sing seems essential for osteogenic commitment and

appears dysregulated in cells entrapped within overly

restrictive microenvironments. Moreover, dynamically

fluctuating tractions in and around focal adhesions are

necessary for matrix rigidity sensing [27].

The third issue mentioned above is how stem cells

release their own matrix and other factors or else modify

pre-existing factors. Minimizing cell-derived or serum-

derived matrix deposition has been investigated to some

extent on ultra-low fouling substrates that are zwitterionic

in nature [28]. In all such studies, proteomic scale analysis

of substrates is increasingly needed to define cell and

serum responses to manufactured microenvironments;

using antibodies to assess whether serum fibronectin or

vitronectin adsorbs or not is just a start. Once measure-

ments are made, however, efforts to prevent adsorption of

proteins either from cells or serum can also point the way

toward preventing foreign body reactions if materials are

to be taken in vivo [29��]. In a study of 3D PEG hydrogels

tethered with small-molecule functional groups, stem cell

fate had been found to be directed toward adipogenic or

osteogenic differentiation with respective functionaliza-

tion of the gels by t-butyl or phosphate [30]. The effects

of such small functional moieties have been speculated to
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reflect differences in cell-derived, lineage-specific matrix

molecules which physisorb to matrix and thus accumulate

at the cell–matrix interface to ultimately direct differen-

tiation. In the RGD-modified MeHA hydrogels cited

above [25�], local matrix changes due to cell-derived

matrix did not seem to impede RGD-integrin signaling,

but no measurements of matrix were pursued — 3D

microenvironments require far more careful characteriz-

ation than 2D, at least because of the complexity of

protein entrapment through the depth of a gel. When

the ability of a cell to probe its surrounding matrix is

affected by complexities of weak or strong adsorption or

encapsulation within covalently crosslinked gels, matrix

rigidity (or other physical property) effects on stem cell

fate are also likely to be affected.

It must be noted that while promoting cell attachment with

matrix-immobilized RGD peptides ensures direct matrix

sensing, there are subtle, yet still confounding differences

with tethering actual matrix proteins. For example, fibro-

nectin contains an RGD motif, among other motifs, that

seems to activate other signaling pathways within the cell,

and at least affect cell migration differently from the

minimal sequence [31]. Matrix tethering is an issue raised

recently by Trappmann et al. [32�]. In contrast to utilizing

RGD peptides, which do not involve the tethering issues in

3D, collagen fibrils were functionalized on 2D polyacryl-

amide (PA) gels or polydimethylsiloxane (PDMS) elasto-

mers. While stem cells differentiated as expected on soft

versus stiff PA gels, the apparent stiffness of PDMS had no

effect. Unfortunately, soft PDMS is well-known to be

difficult to make and requires careful nanoscale character-

ization; it is often accompanied by increased viscosity (or

even fluid-solid heterogeneity), which was not character-

ized by Trappmann et al. but also affects stem cell differ-

entiation [16] as well as epithelial cell sheet motion [15].

Additional studies by Trappmann et al. involved decreas-

ing the collagen anchoring points on stiff gels by lowering

sulfo-SANPAH crosslinker concentration with the effect of

inducing a soft gel phenotype that prevented epidermal

stem cell differentiation. Ligand density is likely

decreased as sulfo-SANPAH is lowered, and cells simply

do not spread on stiff PA gels when adhesive ligand is

limiting [12]. Nonetheless, the idea of decoupling material

stiffness and cell–matrix interactions may find application.

Hard matter approaches
The ligands, assembly, and overall architecture of ECM

can all influence cell behavior. Parsing some aspects of

cell–matrix interaction at the molecular level might

be addressed with precision nano-fabrication of hard

materials as used in the semiconductor industry. An array

of nanotechnology-driven in vitro cell culture platforms

has been reviewed recently [33], and so we only highlight

here a couple of key advances in nanotopography design

principles that are inspired from ECM [34] and/or inspire

precise control of ECM [35,36] in directing cell fate.
www.sciencedirect.com
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Nanoscale patterning of cell adhesion ligands is proble-

matic with soft materials because many cell types generate

sufficient traction strain to rearrange any ligand pattern.

A minimal adhesive matrix unit required for cell attach-

ment, spreading and migration is an important research

question that is addressed with nanopatterned RGD

surfaces. Schvartzman et al. [37��] varied RGD ligand

spacing, density and cluster size, and found that a spacing

of 60 nm in a cluster with a minimum of 4 RGD ligands is

sufficient to support cell spreading. Although ligand sur-

face density might have a role, they speculated that talin,

an integrin-binding scaffolding protein that has 4 poten-

tial binding sites, is involved in the integrin clustering-

derived cell response. Focal adhesion formation was

indeed enhanced for a ligand spacing of �50 nm, con-

comitant with increased cell attachment, migration [31]

and stiffening [38]. In the alginate gel studies by Huebsch

et al., the highest RGD density is roughly �1 RGD ligand

per 70 nm � 70 nm surface patch on an entrapped stem

cell of 10-mm radius. This might explain why matrix-

rigidity dependent traction forces enhance clustering. In

addition, highly ordered 120 nm ligand pits spaced

300 nm apart in a square lattice have been shown ‘best’

for maintaining adult stem cell multipotency for several

weeks, whereas the exquisite sensitivity of stem cells to a

pit placement offset of <50 nm leads to differentiation

[35,39��]. Integrin clustering is thus likely to be a key to

some pathways that signal intracellular changes from

cytoskeleton to nucleus [3�,40]. Epigenetic state and cell

reprogramming can also be affected by nanopatterns in

recent studies by Downing et al. [41], which indicate how

much more we can learn about the cell–matrix interface in

vitro. However, the ‘truth is in the tissue’, and acutely

controlled manipulations of matrix in fully functional,

beating heart have only recently emerged to provide clear

evidence – for example – that heart-specific stiffening in

development parallels matrix and myosin expression to

optimize beating – with additional evidence from cultures

of cardiomyocytes derived from pluripotent stem cells

[42].

Conclusion
In the heterogeneous microenvironments referred to as

stem cell niches, various mechanical and biomolecular

cues are integrated to maintain pluripotency or induce

differentiation. Biological applications of both soft and

hard matter systems to elucidate cell–material inter-

actions have certainly increased our understanding of

the stem cell–matrix interface, but there is much more

to learn. Soft matter substrates are more tissue-mimetic

than hard substrates, but precise nanoscale control of the

cell–matrix interface provides powerful tools for under-

standing and directing a wide range of cell behaviors.

Cell-derived molecules are generally overlooked when

designing and using many of these materials, whether

hard, soft, 2D, or 3D, although some stem cell types
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express lesser matrix than others. Controlling endogenous

expression of such factors by methods such as siRNA

knockdown is one approach. Ultimately, new design rules

that are emerging for material control of stem cell fate

could help with in vitro cultures as well as implantable

scaffolds for more stem cell based therapies.
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